ProtRL is a framework where reinforcement learning algorithms are implemented to be easily applied to any biological language model, focusing on autoregressive pLMs like ZymCTRL. It uses algorithms like weighted directed preference optimization (wDPO) and group relative policy optimization (GRPO) to align the model's output to a desired distribution, which can be defined by various oracles such as structural similarity, stability, or experimental data.
id: jade-otter-jade

EGFR
Medium
4.0e-7 M
True
7.3 kDa
63
id: violet-ram-dust
No preview available
EGFR
None
--
True
N/A
49
id: dark-orca-crystal

EGFR
None
--
False
6.0 kDa
52
id: soft-raven-frost
No preview available
EGFR
None
--
True
N/A
63
id: young-otter-lotus

EGFR
Medium
2.2e-7 M
True
5.9 kDa
52
id: jade-mole-pearl

EGFR
Medium
2.4e-7 M
True
5.9 kDa
51
id: strong-zebra-moss
No preview available
EGFR
Medium
7.8e-7 M
True
N/A
49
id: jade-kiwi-stone

EGFR
Medium
4.3e-7 M
True
6.0 kDa
51
id: deep-ram-cedar

EGFR
None
--
True
5.6 kDa
50
id: bright-ant-ember

EGFR
None
--
True
6.7 kDa
61
id: hollow-tiger-granite

EGFR
None
--
True
6.2 kDa
54
id: shy-quail-oak

EGFR
None
--
True
6.4 kDa
56
id: scarlet-orca-granite

EGFR
None
--
True
5.7 kDa
51
id: quiet-ram-lava

EGFR
None
--
True
6.3 kDa
55
id: violet-heron-rose
No preview available
EGFR
None
--
True
N/A
56
id: steady-jaguar-ivy

EGFR
None
--
True
5.7 kDa
49
id: bright-cobra-moss

EGFR
None
--
True
6.0 kDa
52
id: jade-moth-oak

EGFR
Medium
2.3e-7 M
True
6.1 kDa
52
id: dark-lion-jade

EGFR
None
--
True
6.1 kDa
53
id: hollow-bear-moss

EGFR
Strong
4.9e-8 M
True
6.4 kDa
54
id: quick-zebra-ivy

EGFR
Strong
1.7e-8 M
True
6.0 kDa
52