ProtRL is a framework where reinforcement learning algorithms are implemented to be easily applied to any biological language model, focusing on autoregressive pLMs like ZymCTRL. It uses algorithms like weighted directed preference optimization (wDPO) and group relative policy optimization (GRPO) to align the model's output to a desired distribution, which can be defined by various oracles such as structural similarity, stability, or experimental data.
id: rapid-quail-lava

EGFR
Medium
6.2e-7 M
True
5.7 kDa
49
id: strong-zebra-moss

EGFR
Medium
6.0e-7 M
True
5.7 kDa
49
id: jade-otter-jade

EGFR
Medium
3.8e-7 M
True
7.3 kDa
63
id: rough-goat-stone

EGFR
Medium
4.2e-7 M
True
7.1 kDa
63
id: pale-crow-ruby

EGFR
Medium
3.4e-7 M
True
6.1 kDa
55
id: jade-kiwi-stone

EGFR
Medium
3.7e-7 M
True
6.0 kDa
51
id: jade-moth-oak

EGFR
Medium
3.3e-7 M
True
6.1 kDa
52
id: jade-mole-pearl

EGFR
Medium
2.5e-7 M
True
5.9 kDa
51
id: steady-seal-flint

EGFR
Medium
5.8e-7 M
True
5.9 kDa
52
id: swift-lynx-cloud

EGFR
Medium
1.9e-7 M
True
6.0 kDa
52
id: young-otter-lotus

EGFR
Medium
1.8e-7 M
True
5.9 kDa
52
id: crimson-fox-thorn

EGFR
Medium
2.0e-7 M
True
6.0 kDa
52
id: swift-bear-reed

EGFR
Medium
1.1e-7 M
True
6.2 kDa
53
id: scarlet-heron-frost

EGFR
Medium
1.0e-7 M
True
5.9 kDa
52
id: amber-heron-pearl

EGFR
Medium
5.5e-8 M
True
6.0 kDa
52
id: crimson-deer-leaf

EGFR
Medium
5.6e-8 M
True
6.0 kDa
52
id: silent-seal-vine

EGFR
Strong
3.7e-8 M
True
5.9 kDa
52
id: hollow-bear-moss

EGFR
Strong
3.4e-8 M
True
6.4 kDa
54
id: green-wolf-quartz

EGFR
Strong
3.4e-8 M
True
6.1 kDa
52
id: steady-zebra-lava

EGFR
Medium
3.5e-7 M
True
6.2 kDa
54
id: small-deer-lava

EGFR
Medium
1.5e-7 M
True
5.9 kDa
52