This workflow uses ESM2 and its log-likelihood scoring function to propose beneficial protein mutations. Starting from a known wild-type sequence and improving its overall log-likelihood (how well the given sequence matches its training data distribution) can yield variants with improved stability, expression, and affinity. These beneficial mutations can be sampled with various algorithms, from greedy search to other balancing between exploration and exploitation. Log-likelihood scores are well-correlated with the aforementioned properties, per the ProteinGym benchmark.
id: jade-deer-cedar

EGFR
None
--
True
6.4 kDa
58
id: brisk-yak-ruby

EGFR
None
--
True
6.4 kDa
58
id: quick-moth-plume

EGFR
None
--
True
6.4 kDa
58
id: silver-boar-jade

EGFR
None
--
True
6.4 kDa
58
id: solid-hawk-willow

EGFR
Weak
--
True
6.4 kDa
58
id: vast-quail-cypress

EGFR
None
--
True
6.4 kDa
58
id: bright-otter-iron

EGFR
None
--
True
5.8 kDa
52
id: violet-vole-opal

EGFR
None
--
True
5.4 kDa
49
id: noble-fox-maple

EGFR
None
--
True
5.8 kDa
52
id: rough-falcon-cypress

EGFR
None
--
True
6.5 kDa
58
id: quiet-orca-ruby

EGFR
None
--
True
6.6 kDa
58
id: calm-crane-bronze

EGFR
None
--
True
6.1 kDa
58
id: steady-wolf-stone

EGFR
None
--
True
6.4 kDa
58
id: solid-gecko-cloud

EGFR
None
--
True
6.4 kDa
58
id: swift-dove-opal

EGFR
None
--
True
6.4 kDa
58
id: golden-boar-flint

EGFR
Weak
4.2e-6 M
True
6.7 kDa
58
id: quick-hawk-topaz

EGFR
None
--
True
6.5 kDa
58
id: brisk-swan-frost

EGFR
None
--
True
5.5 kDa
49
id: strong-panda-lava

EGFR
None
--
True
6.5 kDa
58
id: mellow-panther-ember

EGFR
None
--
True
6.6 kDa
58
id: quick-zebra-stone

EGFR
Weak
--
True
5.9 kDa
53